Deep Sequential Image Features for Acoustic Scene Classification

نویسندگان

  • Zhao Ren
  • Vedhas Pandit
  • Kun Qian
  • Zijiang Yang
  • Zixing Zhang
  • Björn Schuller
چکیده

For the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE2017), we propose a novel method to classify 15 different acoustic scenes using deep sequential learning, based on features extracted from Short-Time Fourier Transform and scalogram of the audio scenes using Convolutional Neural Networks. It is the first time to investigate the performance of bump and morse scalograms for acoustic scene classification in an according context. First, segmented audio waves are transformed into a spectrogram and two types of scalograms; then, ‘deep features’ are extracted from these using the pre-trained VGG16 model by probing at the fully connected layer. These representations are then fed into Gated Recurrent Neural Networks for classification separately. Predictions from the three systems are finally combined by a margin sampling value strategy. On the official development set of the challenge, the best accuracy on a four-fold cross-validation setup is 80.9%, which increases by 6.1% when compared with the official baseline (p < .001 by one-tailed z-test).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsc Submission for Dcase 2017: Acoustic Scene Classification Using Deep Residual Convolutional Neural Networks

This report describes our two submissions to the DCASE-2017 challenge for Task 1 (Acoustic scene classification). The first submission is motivated by the superior performance of the deep residual networks for both image and audio classifications. We propose a modified deep residual architecture trained on log-mel spectrogram patches in an end-to-end fashion for acoustic scene classification. W...

متن کامل

Deep Neural Network Bottleneck Feature for Acoustic Scene Classification

Bottleneck features have been shown to be effective in improving the accuracy of speaker recognition, language identification and automatic speech recognition. However, few works have focused on bottleneck features for acoustic scene classification. This report proposes a novel acoustic scene feature extraction using bottleneck features derived from a Deep Neural Network (DNN). On the official ...

متن کامل

Pairwise Decomposition with Deep Neural Networks and Multiscale Kernel Subspace Learning for Acoustic Scene Classification

We propose a system for acoustic scene classification using pairwise decomposition with deep neural networks and dimensionality reduction by multiscale kernel subspace learning. It is our contribution to the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE2016). The system classifies 15 different acoustic scenes. ...

متن کامل

Ensemble Of Deep Neural Networks For Acoustic Scene Classification

Deep neural networks (DNNs) have recently achieved great success in a multitude of classification tasks. Ensembles of DNNs have been shown to improve the performance. In this paper, we explore the recent state-of-the-art DNNs used for image classification. We modified these DNNs and applied them to the task of acoustic scene classification. We conducted a number of experiments on the TUT Acoust...

متن کامل

A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification

One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017